
MATHEMATICS OF COMPUTATION, VOLUME 29, NUMBER 129
JANUARY 1975, PAGES 43-56

Irregularities in the Distribution

of Primes and Twin Primes

By Richard P. Brent

Abstract.   The maxima and minima of sL(x)) — n(x), iR(x)) — n(x),  and

sL2(x)) — n2(x)  in various intervals up to x = 8 x 10       are tabulated.   Here

n(x)  and  n2(x)  are respectively the number of primes and twin primes not

exceeding  x, L(x)  is the logarithmic integral,  R(x)   is Riemann's approxima-

tion to  ir(x), and L2(x)  is the Hardy-Littlewood approximation to  ti"2(;c).

The computation of the sum of inverses of twin primes less than   8 x 10

gives a probable value   1.9021604 ± 5  x 10~7   for Brun's constant.

1.   Approximations to nix).  Let   P= {2, 3, 5, • • • } be the set of primes,

and let 7r(x) be the number of primes not exceeding x.  Two well-known approxi-

mations to 7t(x) for x > 1  are the logarithmic integral:

rx    dt
(1.1) L{x) = \-
v     ; J o log t

O-2) =T + log(logx)+Í:  ^>
k=\     k-k

and Riemann's approximation:

(1.3) R{x)=Z^L{xi'k)
k=i   k

(1.4) =1 + ¿Jtó_
fz. k\kl{k + 1)

Note that (1.1) differs by 1(2) = 1.04516378...  from the frequently used approxi-

mation f2 dt/log t.

We are interested in the errors

O-5) r.{x) = (L(x)> - n{x)

and
(1 6) r2(x) = (Rix)) - n{x),

where <y> denotes the integer closest to y {i.e., the integer part of (y + W)).
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Since r,(x) is usually (though not always: see below) of order x1^2/log x, it is

useful to consider the "normalized" errors

(1.7) s.(x) = r.(x)(logx)/x1/2      for i = 1,2.

Little wood showed that, for sufficiently large x, s,(x)/log log log x attains

arbitrarily large positive and negative values [9], [10], [13]. On the other hand,

Vinogradov [22] has shown that

(1.8) s.{x) = 0(x1/2exp(- a(log x)3'5))

for a positive constant a.  Assuming the Riemann hypothesis, the stronger result

(1-9) s.{x) = 0(log2x)

is known [10].  Explicit bounds are given by Rosser and Schoenfeld [16].

Since 7r(x) has been computed, both directly and indirectly [3], [12], [14],

and tabulated for various values of x up to   1013, the error functions r,-(x) and

s,(x) are easily computed for these values of x.  However, Shanks [19] observed

that this gives little information about the behaviour of the error functions between

the tabulated values.   Let

(1.10) R,{a,b)=      max       rip)
pepn|a, b\ '

and

(1.11) Pffl,b)=      min       rip).
v       ' pePfi[a, b]  '

In Section 4 we describe how R¡{a, b) and p¡{a, b) may be computed fairly ef-

ficiently for a given interval   [a, b].  Table 1 gives the results of such computations

for various intervals up to  8 x 1010, and more detailed tables have been deposited

in the UMT file of this journal.  Although the maximum and minimum in (1.10) and

(1.11) are taken only over primes in   [a, b], it is easy to see that

(1.12) min   rix) = min(p (a, b), ria))
xS[a,b\   ' ' '

and, except in the unlikely event that rix) does not have a jump at each prime

in   [a, b],

(1.13) max   r.(x) = mzx{R.{a + l,b)+ 1, rib)).
x&[a,b]

Sj{x) oscillates so rapidly that it is difficult to plot it over any large domain

of x values.  However, upper and lower bounds on s,(p) for primes p G [a, b]

ate easily found from (1.7), (1.10) and (1.11) once R¡{a, b) and p¡{a, b) are known.

These bounds are fairly sharp if b is close to a.   Figure 1 shows such upper and

lower bounds on s2{p), plotted against log10((a + b)/2), for various intervals

[a, b]   which cover   [104, 8 x 1010]   and satisfy   1.05 < b/a < 1.10.  The graph

of upper and lower bounds on s.{p) looks similar since, from (1.3),
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Table 1

Extrema of approximation errors in   [a, b]_

Ri_p2   R2_P3   R 3

2       10 0 1 0 1 1 1

10      102 1 4-10 2 4

102 103 3 10 -2 1 3 9

103 104 7 23 -6 5 3 12

104 105 13 54 -16 13 5 41

105 2 x 105 29 72 -19 20 13 39

2 x 105 5 x 10s 35 107 -33 33 6 71

5 x 105      106 50 135 -36 35 37 97

106 2 x 106 60 174 -51 49 -88 78

2 x 106 5 x 106 79 261 -84 81 -197 -17

5 x 106      107 118 346 -98 95 -280 -44

107 2 x 107 134 435 -145 127 -281 -108

2 x 107 5 x 107 170 692 -231 260 -248 37

5 x 107      108 344 895 -242 260 -29 262

108 2 x 108 239 1149 -514 336 -143 643

2 x 108 5 x 108 585 1724 -544 565 360 1046

5 x 108      109 744 2668 -685 965 536 1488

109 2 x 109 770 3354 -1093 982 566 2669

2 x 109 5 x 109 1316 4612 -1681 1567 -336 2130

5 x 109      1010 2129 7048 -2387 2657 -1930 696

1010 2 x 1010 2159 10334 -2776 3787 -5833 2143

2 x 1010 5 x 1010 3132 14990 -4923 4950 -7334 4443

5 x 1010 8 x 1010 5325 17065 -5493 6106 -2692 2846

(1.14) s.{x) = s2{x) + 1 + 0(l/log x)

as x —> °°.

The distribution of 11966 tabulated values of s2{n) for «G [103, 8.3 x 1010]

is shown in Figure 2.  The sample mean and standard deviation are 0.003 and

0.206 respectively.  It is plausible to conjecture that a limiting distribution exists,

with mean zero and standard deviation about 0.21.

Some primes p for which  \s2(p)\ is unusually large are given in Table 2.  In

fact, if an "exceptional peak" is a maximal interval   [a, b]   such that r2(p) has

constant sign for all primes p in (a, b), and  \s2(p)\ > 0.6 for at least one prime

p in (a, b), then Table 2 includes a prime p (with maximal  \r2(p)\) from each

exceptional peak in   [104, 8 x 1010].  The entry ^(30909673) = 0.52. . . was

found by Appel and Rosser [ 1 ].  On the basis of Mapes' computations of

7r(l.l x 108) and 7i(1.8 x 108), Shanks [19] conjectured that lower values of
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FIGURE 1
RIEMANN'S APPROXIMATION
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s.ip) could be found near  1.1 x 108 and  1.8 x 108, and the first and third

entries in Table 2 show that this is correct.

Table 2 and an examination of the primes less than  104  show that

(1-15) Sj(p)> 0.42

for all prime p G [5, 8 x 1010], and hence

(1.16) tt(x)<L(x)

for x < 8 x 1010.  This extends the result of Rosser and Schoenfeld [16], who

proved (1.16) for x < 108.  Note that  \rt{p)\ < \r2(p)\ for several entries in Table 2.

The table also shows that

(1.17) -0.79 <s2{p)< 0.75

for all prime p in  [104, 8 x 1010], and examination of primes less than  104

-0.90 <s2ip)< 0.75

then shows that

(1.18)

for all prime p <8 x 1010.

Shanks [18] suggested the plausibility of

(1.19) 1    N
«m  A7Zsi(")=1
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or, equivalently in view of (1.14),

(1.20) Um
N-

1    N

A7l>2(") =

If true, (1.19) and (1.20) would give a sense in which Riemann's approximation (or

even the simpler approximation L{x) - \6L{xll2) obtained by taking the first two

terms in (1.3)) is better than the logarithmic intergral approximation.  However,

Table 3 gives some evidence that the limits in (1.19) and (1.20) may not exist.

If there are large intervals in which s2{n) is uniformly bounded away from zero

and of constant sign, then (1.20) can hold only if the lengths of such intervals near

N are o{N) as N —► °°.  Table 3 gives some disjoint intervals   [a, b]   such that

104 < b < 8 x 1010,  b/a > 1.08, and r2{p) has constant sign for all prime p

in   [a, b].  The number of such intervals in each decade seems to be roughly con-

stant.  Intervals in which  |s2(x)| > 0.01  (say) are only slightly smaller than the

intervals given in Table 3.

The limit is more likely to exist if the mean of s2{n) is taken with respect

to log n  rather than n.  This suggests the conjecture

(1.21) lim
N-rO (l^)j>>>'-°
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Table 2

Some primes p with \s2(p)\> 0.6

■nip) ''lip)    r2(p)        s.(p) s2(p)

110102617

36917099

179845447

11467849447

59753

30909673

24137

355111

7712599823

302831

1110072773

3445943

516128797

50229461677

766449311

12871811

905055691

18834002419

10016844407

19373

463181

1090697

21728785387

3278837

42863

38177961203

3593311

3745619057

11777

1195247

10219591

6308959

2256804

10022306

518601767

6041

1910834

2688

30392

355168013

26218

56146451

246651

27159319

2128963733

39507064

841519

46254156

832984013

455784972

2192

38685

85021

954969014

235526

4483

1637252682

256264

178440671

1410

92607

678161

239

692

331

8594

19

170

14

35

7048

93

770

79

2100

16289

2489

134

2668

10334

2159

33

107

151

3132

84

19

4075

242

1504

27

60

372

-446

260
-514

3352
-16

-231

-11

-33

2657

30
-1093

-84

766

6106

905
-145

965

3787
-2776

9

33

47
-3850

-75

-12

-4923

77
-1681

7
-47

119

0.4218

1.9845

0.4691

1.8589

0.8548

0.5274

0.9094

0.7506

1.8271

2.1329

0.4813

0.6406

1.8544

1.7908

1.8392

0.6114

1.8290

1.7815

0.4967

2.3405

2.0511

2.0101

0.5057

0.6960

0.9788

0.5082

1.9270

0.5417

2.3322

0.7680

1.8781

-0.7871

0.7456
-0.7285

0.7250
-0.7199

-0.7166

-0.7145

-0.7077

0.6888

0.6880
-0.6833

-0.6811

0.6764

0.6713

0.6687
-0.6616

0.6615

0.6529
-0.6387

0.6383

0.6326

0.6257

-0.6217

-0.6214

-0.6182

-0.6139

0.6131
-0.6055

0.6046
-0.6016

0.6008

or equivalently,

(1.22) lim (~~\ Z s, {n)ln ■■
*r-+-\logN J£2 lV

Note that (1.20) implies (1.21), but not conversely.
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Table 3

Some intervals [a, b] where r2(p) has constant sign and b/a > 1.08

b/a p2{a, b) R2ia, b)

9278

45894

56478

164912

291570

324090

638372

4889994

6862134

9867492

34225760

504454344

3219006864

3637747892

35699734892

47048490524

53087472258

11046

49942

62850

179748

318916

369790

689958

5530998

7472358

10673698

38856760

552984016

3507922926

4013111982

38858023776

51040905052

58483092228

1.191

1.088

1.113

1.090

1.094

1.141

1.081

1.131

1.089

1.082

1.135

1.096

1.090

1.103

1.088

1.085

1.102

-6

0
-16

0

0
-33

0
-84

-98

0

0

0

0
-1681

-4923

0
-5288

0

8

0

20

30

0

28

0

0

119

260

766

1567

0

0

6106

0

Let us return to the conjecture of a limiting distribution for s2(x).  The above

discussion shows that care must be taken in formalizing the conjecture, for if x

and y are drawn from  [a, b], then s2(x) and s2(y) will certainly be dependent

if b/a is too close to 1.  One possibility is to conjecture that the sequence

(s2(x,)) has a limiting distribution if (x,) is a random sequence of positive numbers

suchthat x,./x,.+ 1 —► 0 (and hence x,-—*°°)   as i—> °°.

If the conjecture is true, and if the limiting distribution is approximately nor-

mal, with mean 0 and standard deviation about 0.21, we would expect s2(x) <

— 1  (or s.{x) < 0) for about one in every  106  independent random samples.

Similarly, we would expect s2{x) < — 0.6 for about one in 450 independent

samples.  Since Table 2 covers the range 4.0 < log10x < 10.9, and includes 17

entries with s2(x) < - 0.6, we would expect an entry with s2(x) < - 1  if the

table could be extended to about

loSio*:
10.9-4.0

17
•)(£)- 900.

Although this argument is very crude, it suggests that (1.16) probably holds for

log10x up to about 100 (well beyond the range of feasible computation).  It is
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known that (1.16) is violated long before the legendary Skewes' number [21] ;

specifically, Lehman proved [11] that certain integers x between  1.53 x 101165

and  1.65 x 10116S suffice.

2.  Approximations to 7r2(x).  We say that q is a "twin prime" if both q

and q + 2 are prime.   Let  Q= {3, 5, 11, 17, . . .} be the set of twin primes, and

let 7T2(x) be the number of twin primes not exceeding x.  The Hardy-Littlewood

approximation to tt2(x) is

where

(2.2) c=   Tí    -—^-=0.66016181...
2    2<Pep(l-l/p)2

is the "twin-prime" constant [24].

Properties of tt(x) may be proved using the well-known relationship between

the distribution of primes and the location of the zeros of the Riemann zeta func-

tion [10, Chapter 4].  Unfortunately, no similar relationship is known for twin

primes, so very little is known about 7r2(x).  It is not known whether there are in-

finitely many twin primes, and much less whether

(2-3) 7r2(x)~L2(x)

as x —> °°.  However, empirical evidence suggests that (2.3) is true.  In Table 4 we

give 7i2(n) and

(2.4) r3in) = (L2in))-n2{n)

for various n < 8 x 1010.  The values of 7r2(n) were computed by enumerating

the primes up to n  and counting the number of twins, for no more subtle method

is known.  Our counts agree with those of Weintraub [23]   (for n < 2 x 108) and

Bohman [4]   (for n < 2 x 109).

Let

(2.5) RJa,b)=     max       rJq)
3 qeon{a,b]

and

(2.6) P3{a,b)=     min      rJq).

The functions R3{a, b) and p3{a, b) were computed for various intervals   [a, b]

up to  8 x 1010, and some results are given in Table 1.  More detailed tables have

been deposited in the UMT file of this journal.
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Table 4

Counts of twin primes and estimates of Brun 's constant

ttJn) rJn) B{n) B*{n)

103 35 11 1.518032463560 1.90030531

104 205 9 1.616893557432 1.90359819
10s 1224 25 1.672799584828 1.90216329

106 8169 79 1.710776930804 1.90191335

107 58980 -226 1.738357043917 1.90218826

108 440312 56 1.758815621068 1.90216794

109 3424506 802 1.774735957639 1.90216024

2 x 109 6388041 984 1.778859404547 1.90215957

3 x 109 9210144 461 1.781150604842 1.90215977

4xl09 11944438 1032 1.782724861607 1.90215950

5 x 109 14618166 291 1.783918570267 1.90215984

6xl09 17244409 -770 1.784876490721 1.90216027

7 x 109 19830161 -119 1.785673823717 1.90216007

8xl09 22384176 -248 1.786355995279 1.90216011

9 x 109 24911210 -1324 1.786951346213 1.90216037

1010 27412679 -1262 1.787478502719 1.90216036

2 x 1010 51509099 -4667 1.790830284135 1.90216076

3xl010 74555618 -3348 1.792701319111 1.90216064

4xl010 96956707 1869 1.793990899123 1.90216031

5 x 1010 118903682 1630 1.794970693076 1.90216031

6xl010 140494397 1555 1.795758170053 1.90216033

7xl010 161795029 2031 1.796414982022 1.90216032

8xl010 182855913 -985 1.796977508288 1.90216040

Let s3{x) be defined by (1.7) with i = 3.  Upper and lower bounds on s3  in

various intervals were computed in the same way as for s2, and are shown in Fig-

ure 3.  Comparison of Figures 1 and 3 shows that the behaviour of s3  is quite dif-

ferent from that of s2  (or st).  Although s3{q) changes sign, there are large inter-

vals in which it is of constant sign.  For example, s3{q) is positive for all twin

primes q in   [3, 1.36 x 106], negative in   [1.52 x 106, 3.52 x 107], positive in

[1.50 x 108,3.06 x 109], negativein  [1.19 x 1010, 2.71 x 1010], etc.  Hence,

it seems unlikely that the limit corresponding to (1.19) exists, although it is possible

that the limit corresponding to (1.22) (with s.  replaced by s3) exists.

Suppose that the integers A, 5, ■ ■ ■ ,N ate randomly and independently

selected or rejected, with the probability of selection of n being 2cJlog2n.  If
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FIGURE 3
TNIN PRIME APPROXIMATION
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P{N) is the number of integers selected, then P{N) is distributed with mean p{N)

~ L2{N) and variance a2(A)~£2(A), and the distribution is asymptotically normal

as N-+°°. Thus 5(A) = (¿2(A) - P{N))ilog N)lNll2  is asymptotically normal

with mean zero and standard deviation  (2c2)^2 — 1.15.   It is interesting to note

that 7T2(A) and s3{N) appear to behave like P{N) and S{N) respectively.  (The

analogy for primes is apparently false, for it predicts that s.{N) should have mean

0 and standard deviation 0((log A)1^2), and does not predict the frequent fluc-

tuations in Sj(A) (compare Figures 1 and 3).  For some rigorous results connecting

primes with random walks, see [2].)

We shall briefly mention some other approximations to 7r2(x).  The simplest

is 2c2x/log2x, which differs from L2{x) by terms of order x/log3x.  The empirical

results discussed above show that

(2.7) M<7)l<2.3

for all twin primes q<8x 1010, so  \L2{x) - it2{x)\ is of order x1/2/logx for

x < 8 x 1010.  Hence, L2{x) is a more accurate approximation, at least in the

range considered.

Other approximations are obtained by replacing  l/log2f in (2.1) by {R'{t))2

or by {2R'{t)/log t - 1/log2/), as suggested by Fröberg [8] and Shanks and Wrench

[20], respectively.  Since these approximations differ from L2{x) by terms of order
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x1l2/log2x they are not appreciably better or worse than L2(x) over most of the

range x < 8 x 1010.  The advantage of L2{x) is that it is easy to compute, e.g.,

from

(2.8) ¿2(x) = 2c2(Z,(x) + /:-x/logx),

where K = 2/log2 - 1(2) = 1.84022630- • • .

3.   Brun's Constant.   Let

(3.1) B{x)=   Z   (l +-¿t)

Brun [7] showed that "Brun's constant" Z?(°°) = lhnx_+a,B{x) is finite (although the

sum of reciprocals of primes has been known to be infinite since Euler's time). We

have followed the definition of Shanks and Wrench [20], although Brun [7] and

Selmer [17] consider 5(°°) - (1/3 + 1/5), and Bohman [4] considers 5(°°) - 1/5.

Assuming that twin primes are distributed randomly with density L'2{x) =

2c2/log2x (see Section 2), we can estimate

Joo df
.    ,    =4c-/logx,

x     tlog¿t Z

which suggests the definition

(3.3) 5*(x)=5(x) + 4c2/logx.

Although limx_i.^B*{x) = limx_^00B{x) = 5(°°), it is probable that the rate of con-

vergence of B*{x) is much faster than that of B{x).  In fact, in contrast to (3.2),

we expect that B*{x) - Z?(°°) is asymptotically normally distributed with mean

o(l/(x1^2logx)) and standard deviation ~ (8c2)1'2/(x1^2logx).

Selmer [17] estimated 5(°°) = 1.901 ± 0.014 by extrapolation from

5(200000).  Fröberg [8] computed B{n) for several n < 220  and estimated 5(°°)

= 1.90195 ± 3 x 10~5.  Shanks and Wrench [20] found 5(32452843) and esti-

mated Bi°°)= 1.90218 ± 2 x 10~s.  Finally, Bohman [4] computed B{2 x 109)

and estimated j5(°°) = 1.90216 ± 5 x 10-6.  During the computation of n2{n) as

described above, we computed B{n) and B*{n) for various n<8 x 1010.  Some

values are given in Table 4, and more are given in a table deposited in the UMT file

of this journal.  From our computation of B*{8 x 1010) we estimate that 5(°°)

probably lies in the range

(3-4) 5(°°)= 1.9021604±5 x 10~7.

In the computation of B{n) we used floating-point arithmetic with a 60-bit

fraction, and accumulated the sum using Moller's "quasi double-precision" device [15].

Hence, rounding errors should not affect the entries in Table 4.  (Our values of B{n)
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differ from Bohman's (corrected) values in the 9th decimal place, possibly because of

the effect of rounding errors in his calculations.)

Although we do not know how to bound the error in our estimate (3.4), the

discussion above suggests that x1^2logx{B*{x) - 5(°°)) is asymptotically normally

distributed, and we certainly have

(3-5) lx1/2logx(5*(x)- 1.9021604)|<3.5

for all tabulated values in the range   [104, 8 x 1010].  (The maximum value of

3.4927 is at x = 860000, in the region of the sharp drop in Figure 3.)  Hence, it

is probable that

(3.6)       LS*(8 x 1010)-fi(oo)|<-—¡^-r^ <5 x 10~7,
(8 x 1010)1/2log(8x 1010)

which explains the error estimate in (3.4).   If the constant {8c2Y^2  above is correct,

the probability that ¿?(°°) is in the range given by (3.4) is about 0.88.

Different methods of extrapolating B{x) to the limit have been suggested by

Fröberg [8] and Shanks and Wrench [20], but their extrapolations differ from

B*{x) by 0{l/x1l2log2x), so are probably not much better or worse than B*{x).

It seems difficult to obtain an appreciably better extrapolation than B*{x) without

being able to predict the large-scale oscillations of s3(x) (see Figure 3).

4.  Computation of R¡{a, b) and p¡{a, b).  If R¡ and p¡ are defined by

(1.10) and (1.11), the most time-consuming part of their computation is not the

generation of the primes in  [a, b], which may be done efficiently by a sieve method

(as in [5], [6]), but the frequent evaluation of L{x) and R{x) to a precision suf-

ficient to determine (L{x)) and (/?(x)>.  (Similarly for R3  and p3  defined by

(2.5) and (2.6), although the situation is not so clear here, because it takes longer,

on the average, to generate a twin prime than a prime.)

To avoid evaluating (Lip)) and (R(p)) for every prime p in   [a, b], we can

use simple upper and lower bounds for Lip) and Rip), and only evaluate (Lip)) and

(Rip)) if the upper and lower bounds fail to show that r,(p) lies within the maxi-

ma and minima already found.  The following lemmas indicate how suitable upper

and lower bounds may be found.

Lemma 1.   Suppose f'{x) < 0 on   [a, b], and a < a' < x < x < b' < b.

Then

ft?)-M >/(*')-/(*) > f{b')~f{b)
a'-a x'-x b'-b

The proof is immediate from a mean value theorem.

Lemma 2.  ¿"(x),5"(x) and L"2{x) are negative for x> 1.

Proof. From (1.1), (2.1) and (1.4) we have L\x) = - l/(xlog2x)<0, L"2{x) =

-4c2/(xlog3x)<0, and



PRIMES AND TWIN PRIMES 55

(4.1) R»(.      rif ( k+l_k     Ulogxf-1
1 ' fc^ik+l)   S(k + 2)J  (fc+1)! •

Now f(jt + 1) < 1 + 1/Jt for k > 1, so (jfc + l)lS(k + 1) > k/iik + 2), and the result

follows from (4.1).
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