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Irregularities in the Distribution
of Primes and Twin Primes

By Richard P. Brent

Abstract. The maxima and minima of (L(x)) — m(x), (R(x)> — m(x), and
(Lz(x)) - 172(x) in various intervals up to x = 8 X 1010 are tabulated. Here
m(x) and 1r2(x) are respectively the number of primes and twin primes not
exceeding x, L(x) is the logarithmic integral, R(x) is Riemann’s approxima-
tion to w(x), and L,(x) is the Hardy-Littlewood approximation to m,(x).
The computation of the sum of inverses of twin primes less than 8 X 1010

gives a probable value 1.9021604 + § X 10~7 for Brun’s constant.

1. Approximations to n(x). Let P= {2,3,5,---} be the set of primes,
and let m(x) be the number of primes not exceeding x. Two well-known approxi-
mations to m(x) for x > 1 are the logarithmic integral:

(1.1) L(x) = )( log .

(12) = v + log(log x) + kzl (l(;cg!:)k,
and Riemann’s approximation:

(1.3) R(x)=kil HB ) iy

(1.4) it ;k%j—fl—)

Note that (1.1) differs by L(2) = 1.04516378... from the frequently used approxi-
mation [ dt/log .

We are interested in the errors
(1.5) r (x) = L&) = x)
and
(1.6)
where (y) denotes the integer closest to y (i.e., the integer part of (y + 14)).

r,(x) = R - m(x),
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Since r,(x) is usually (though not always: see below) of order x!/2/log x, it is
useful to consider the “normalized” errors

1.7) 5,(x) = r(x)(log x)x'?  for i=1,2.

Littlewood showed that, for sufficiently large x, s,(x)/log log log x attains
arbitrarily large positive and negative values [9], [10], [13]. On the other hand,
Vinogradov [22] has shown that

(1.8) 5,(x) = O(x" Pexp(— a(log x)*/%))
for a positive constant «. Assuming the Riemann hypothesis, the stronger result
(1.9) 5,(x) = O(log®x)

is known [10]. Explicit bounds are given by Rosser and Schoenfeld [16].

Since m(x) has been computed, both directly and indirectly [3], [12], [14],
and tabulated for various values of x up to 10'3, the error functions r{x) and
s/(x) are easily computed for these values of x. However, Shanks [19] observed
that this gives little information about the behaviour of the error functions between
the tabulated values. Let

(1.10) R, b)= max rp)
pEPN[a, b}

and

(1.11) pfla, b)= min  r(p).

pEPN[a, b] !

In Section 4 we describe how R (a, b) and p,a, b) may be computed fairly ef-
ficiently for a given interval [aq, b]. Table 1 gives the results of such computations
for various intervals up to 8 x 10'°, and more detailed tables have been deposited
in the UMT file of this journal. Although the maximum and minimum in (1.10) and
(1.11) are taken only over primes in [a, b], it is easy to see that

(1.12) min r(x) = min(p(a, b), ria))
x€la,b]

and, except in the unlikely event that r(x) does not have a jump at each prime
in [a, b],
(1.13) max r(x)=max(R(a + 1,b) + 1,7/(b)).

x€la,b]

s;(x) oscillates so rapidly that it is difficult to plot it over any large domain
of x values. However, upper and lower bounds on s,p) for primes p € [q, b]
are easily found from (1.7), (1.10) and (1.11) once Rya, b) and p,a, b) are known.
These bounds are fairly sharp if b is close to a. Figure 1 shows such upper and
lower bounds on s,(p), plotted against log, ,((a + b)/2), for various intervals
[a, b] which cover [10%, 8 x 10'°] and satisfy 1.05 < b/a < 1.10. The graph
of upper and lower bounds on s,(p) looks similar since, from (1.3),
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TABLE 1
Extrema of approximation errors in [a, b)
a b Py R, ) R, Pj R,
2 10 0 1 0 1 1 1
10 102 1 4 -1 0 2 4
102 103 3 10 -2 1 3 9
103 104 7 23 -6 5 3 12
104 105 13 54 -16 13 5 41
105 2 x 105 29 72 -19 20 13 39
2 x 105 5 x 105 35 107 -33 33 6 71
5 x 10° 106 50 135 -36 35 37 97
106 2 x 106 60 174 =51 49 —88 78
2 x 106 5 x 106 79 261 -84 81 -197 -17
5 x 106 107 118 346 —-98 95 —280 —44
107 2 x 107 134 435 —145 127 -281 —-108
2 x 107 5 x 107 170 692 -231 260 —248 37
5 x 107 108 344 895 —242 260 =29 262

108 2 x 108 239 1149 —514 336 —-143 643

2 x 108 5 x 108 585 1724 —544 565 360 1046
5 x 108 10° 744 2668 —685 965 536 1488
10° 2 x 10° 770 3354  -1093 982 566 2669

x 10° 5 x 10? 1316 4612  -1681 1567 -336 2130

5 x 10° 1010 2129 7048 2387 2657 1930 696
1010 2 x 1010 2159 10334 2776 3787 5833 2143

2 x 1010 5 x 1010 3132 14990 —4923 4950 7334 4443
5x 1010 8 x 1010 5325 17065 -5493 6106 2692 2846

(1.14) s, (x) =5,(x) + 1 + O(1/log x)
as x —> oo,

The distribution of 11966 tabulated values of s,(n) for n€ [10%, 8.3 x 10'°]
is shown in Figure 2. The sample mean and standard deviation are 0.003 and
0.206 respectively. It is plausible to conjecture that a limiting distribution exists,
with mean zero and standard deviation about 0.21.

Some primes p for which |s,(p)| is unusually large are given in Table 2. In
fact, if an “exceptional peak” is a maximal interval [a, b] such that r,(p) has
constant sign for all primes p in (g, b), and Is,(p)| = 0.6 for at least one prime
p in (a, b), then Table 2 includes a prime p (with maximal |r,(p)|) from each
exceptional peak in [10%, 8 x 10'°]. The entry s,(30909673) = 0.52. .. was
found by Appel and Rosser [1]. On the basis of Mapes’ computations of
m(1.1 x 10®) and 7(1.8 x 10%), Shanks [19] conjectured that lower values of
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FIGURE 1
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s,(p) could be found near 1.1 x 108 and 1.8 x 10%, and the first and third
entries in Table 2 show that this is correct.
Table 2 and an examination of the primes less than 10* show that

(1.15) 5,(p) > 042
for all prime p € [5, 8 x 10'°], and hence
(1.16) m(x) < L(x)

for x <8 x 10'%. This extends the result of Rosser and Schoenfeld [16], who
proved (1.16) for x < 10%, Note that Ir,(p)| < lry(p)| for several entries in Table 2.
The table also shows that

(1.17) -0.79 <s,(p) <0.75

for all prime p in [10% 8 x 10'°], and examination of primes less than 10*
then shows that

(1.18) —0.90 <s,(p)<0.75
for all prime p < 8 x 10'°,
Shanks [18] suggested the plausibility of

(1.19)
N—>oo

1 X
lim v :L:’Zsl(n)=1
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FIGURE 2
DISTRIBUTIBN BF VALUES OF S2(N)
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or, equivalently in view of (1.14),
1 N
1.20 lim — =
(1.20) i E2s2(n) 0.

If true, (1.19) and (1.20) would give a sense in which Riemann’s approximation (or
even the simpler approximation L(x) — %L(x'/?) obtained by taking the first two
terms in (1.3)) is better than the logarithmic intergral approximation. However,
Table 3 gives some evidence that the limits in (1.19) and (1.20) may not exist.
If there are large intervals in which s,(n) is uniformly bounded away from zero
and of constant sign, then (1.20) can hold only if the lengths of such intervals near
N are o(N) as N —> o, Table 3 gives some disjoint intervals [z, b] such that
10 < b <8 x 10'°, b/a>1.08, and r,(p) has constant sign for all prime p
in [z, b]. The number of such intervals in each decade seems to be roughly con-
stant. Intervals in which [s,(x)| = 0.01 (say) are only slightly smaller than the
intervals given in Table 3.

The limit is more likely to exist if the mean of s,(n) is taken with respect
to log n rather than n. This suggests the conjecture

(121) YERTAY

n=2
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TABLE 2

Some primes p with Is,(p)| > 0.6

p m(p) ry 2] rz(p) Sy ®) Sz(p)
110102617 6308959 239 —446 0.4218 —0.7871
36917099 2256804 692 260 1.9845 0.7456
179845447 10022306 331 -514 0.4691 -0.7285
11467849447 518601767 8594 3352 1.8589 0.7250
59753 6041 19 -16 0.8548 -0.7199
30909673 1910834 170 -231 0.5274 —0.7166
24137 2688 14 -11 0.9094 -0.7145
355111 30392 35 -33 0.7506 —0.7077
7712599823 355168013 7048 2657 1.8271 0.6888
302831 26218 93 30 2.1329 0.6880
1110072773 56146451 770 -1093 0.4813 —0.6833
3445943 246651 79 -84 0.6406 —0.6811
516128797 27159319 2100 766 1.8544 0.6764
50229461677 2128963733 16289 6106 1.7908 0.6713
766449311 39507064 2489 905 1.8392 0.6687
12871811 841519 134 —-145 0.6114 —0.6616
905055691 46254156 2668 965 1.8290 0.6615
18834002419 832984013 10334 3787 1.7815 0.6529
10016844407 455784972 2159 -2776 0.4967 —0.6387
19373 2192 33 9 2.3405 0.6383
463181 38685 107 33 2.0511 0.6326
1090697 85021 151 47 2.0101 0.6257
21728785387 954969014 3132 —3850 0.5057 -0.6217
3278837 235526 84 =75 0.6960 -0.6214
42863 4483 19 -12 0.9788 —0.6182
38177961203 1637252682 4075 —4923 0.5082 —0.6139
3593311 256264 242 77 1.9270 0.6131
3745619057 178440671 1504 -1681 0.5417 —0.6055
11777 1410 27 7 2.3322 0.6046
1195247 92607 60 —47 0.7680 —0.6016
10219591 678161 372 119 1.8781 0.6008
or equivalently,
. 1 N
(1.22) 1\}1_?; (logN ) 2 8, ()in=1.

n=2

Note that (1.20) implies (1.21), but not conversely.
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TABLE 3

Some intervals [a, b] where r,(p) has constant sign and bla > 1.08
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a b bla pz(a: b) Rz(a: b)
9278 11046 1.191 -6 0
45894 49942 1.088 0 8
56478 62850 1.113 -16 0
164912 179748 1.090 0 20
291570 318916 1.094 0 30
324090 369790 1.141 -33 0
638372 689958 1.081 0 28
4889994 5530998 1.131 -84 0
6862134 7472358 1.089 -98 0
9867492 10673698 1.082 0 119
34225760 38856760 1.135 0 260
504454344 552984016 1.096 0 766
3219006864 3507922926 1.090 0 1567
3637747892 4013111982 1.103 -1681 0
35699734892 38858023776 1.088 —4923 0
47048490524 51040905052 1.085 0 6106
53087472258 58483092228 1.102 —5288 0

Let us return to the conjecture of a limiting distribution for s,(x). The above
discussion shows that care must be taken in formalizing the conjecture, for if x
and y are drawn from [g, b], then s,(x) and s,(y) will certainly be dependent
if bla is too close to 1. One possibility is to conjecture that the sequence
(s,(x;)) has a limiting distribution if (x;) is a random sequence of positive numbers
such that x,/x;, ; — O (and hence x;—>°9) as i —> oo,

If the conjecture is true, and if the limiting distribution is approximately nor-
mal, with mean 0 and standard deviation about 0.21, we would expect s,(x) <
— 1 (or s,(x) <0) for about one in every 10% independent random samples.
Similarly, we would expect s,(x) < — 0.6 for about one in 450 independent
samples. Since Table 2 covers the range 4.0 <log, ,x < 10.9, and includes 17
entries with s,(x) < — 0.6, we would expect an entry with s,(x) < — 1 if the
table could be extended to about

_ 10.9-4.0) (1_0_6>~
loglox-< T 250 900.

Although this argument is very crude, it suggests that (1.16) probably holds for
log, ;x up to about 100 (well beyond the range of feasible computation). It is
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known that (1.16) is violated long before the legendary Skewes’ number [21];
specifically, Lehman proved [11] that certain integers x between 1.53 x 10165
and 1.65 x 10'165 suffice.

2. Approximations to m,(x). We say that g is a “twin prime” if both ¢
and g + 2 are prime. Let Q= {3,5, 11, 17, ...} be the set of twin primes, and
let m,(x) be the number of twin primes not exceeding x. The Hardy-Littlewood
approximation to m,(x) is

x dt
2.1 L2(x)= 2, , Bg_z—t ,
where
1-2
22) c,= ——/’1—2 =0.66016181...
2<pepr (1 —1/p)

is the “twin-prime” constant [24].

Properties of m(x) may be proved using the well-known relationship between
the distribution of primes and the location of the zeros of the Riemann zeta func-
tion [10, Chapter 4]. Unfortunately, no similar relationship is known for twin
primes, so very little is known about m,(x). It is not known whether there are in-
finitely many twin primes, and much less whether

2.3) my(x) ~ L, (x)

as x — oo, However, empirical evidence suggests that (2.3) is true. In Table 4 we
give m,(n) and

(24) ry(m)=<«L,(n) —m,(n)

for various n < 8 x 10'°%. The values of m,(n) were computed by enumerating
the primes up to n and counting the number of twins, for no more subtle method
is known. Our counts agree with those of Weintraub [23] (for n <2 x 108) and
Bohman [4] (for n <2 x 10%).

Let
2.5 R_ (@ b)= max r
(2.5) ,@ b) e ;@)
and
2.6 0.(a b)= min r.(g).
2.6) @0)= _min | r(@)

The functions R,(a, b) and p;(a, b) were computed for various intervals [a, b]
up to 8 x 10'°, and some results are given in Table 1. More detailed tables have
been deposited in the UMT file of this journal.
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TABLE 4

Counts of twin primes and estimates of Brun’s constant

n m,(n) r3(m) B(n) B*(n)
103 35 11 1.518032463560 1.90030531
104 205 9 1.616893557432 1.90359819
105 1224 25 1.672799584828 1.90216329
106 8169 79 1.710776930804 1.90191335
107 58980 —226 1.738357043917 1.90218826
108 440312 56 1.758815621068 1.90216794
10° 3424506 802 1.774735957639 1.90216024
2 x 10° 6388041 984 1.778859404547 1.90215957
3 x10° 9210144 461 1.781150604842 1.90215977
4 x 10° 11944438 1032 1.782724861607 1.90215950
5x 109 14618166 291 1.783918570267 1.90215984
6 x 10° 17244409 =770 1.784876490721 1.90216027
7 x 10° 19830161 -119 1.785673823717 1.90216007
8 x 10?2 22384176 —248 1.786355995279 1.90216011
9 x 10° 24911210 -1324 1786951346213 1.90216037
1010 27412679 -1262 1787478502719 1.90216036
2 x 1010 51509099 —4667 1.790830284135 1.90216076
3 x 1010 74555618 —3348 1.792701319111 1.90216064
4 x 1010 96956707 1869 1.793990899123 1.90216031
5 x 1010 118903682 1630 1.794970693076 1.90216031
6 x 1010 140494397 1555 1795758170053 1.90216033
7 x 1010 161795029 2031 1.796414982022 1.90216032
8 x 1010 182855913 -985 1.796977508288 1.90216040

Let s5(x) be defined by (1.7) with i = 3. Upper and lower bounds on s3 in
various intervals were computed in the same way as for s,, and are shown in Fig-
ure 3. Comparison of Figures 1 and 3 shows that the behaviour of 55 is quite dif-
ferent from that of s, (or s,). Although s;(¢q) changes sign, there are large inter-

vals in which it is of constant sign. For example, s;(q) is positive for all twin
primes g in [3, 1.36 x 10°], negative in [1.52 x 105, 3.52 x 107], positive in
[1.50 x 108, 3.06 x 10°], negative in [1.19 x 10'%, 2.71 x 10'°], etc. Hence,
it seems unlikely that the limit corresponding to (1.19) exists, although it is possible
that the limit corresponding to (1.22) (with s, replaced by s5) exists.

Suppose that the integers 4, 5, -+ -, N are randomly and independently
selected or rejected, with the probability of selection of n being 2c,/log?n. If
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FIGURE 3
TWIN PRIME APPRBXIMATICN
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P(N) is the number of integers selected, then P(N) is distributed with mean u(N)
~ L,(N) and variance 0*(NV) ~ L,(N), and the distribution is asymptotically normal
as N — oo, Thus S(V) = (L,(V) — P(N))(log N)/N /2 is asymptotically normal
with mean zero and standard deviation (202)1/ 2 ~1.15. It is interesting to note
that 7,(NV) and s;(N) appear to behave like P(NV) and S(V) respectively. (The
analogy for primes is apparently false, for it predicts that s, (V) should have mean
0 and standard deviation O((log N)'/?), and does not predict the frequent fluc-
tuations in s,(NV) (compare Figures 1 and 3). For some rigorous results connecting
primes with random walks, see [2].)

We shall briefly mention some other approximations to m,(x). The simplest
is 2c2x/log2x, which differs from L,(x) by terms of order x/log3x. The empirical
results discussed above show that

2.7) y(@1<23

for all twin primes ¢ < 8 x 10'°, so IL,(x) — m,(x)| is of order x!'/2[log x for
x < 8 x 10'°. Hence, L,(x) is a more accurate approximation, at least in the
range considered.

Other approximations are obtained by replacing 1/log?¢ in (2.1) by (R'(1))?
or by (2R'(t)/log t — 1/log?z), as suggested by Froberg [8] and Shanks and Wrench
[20], respectively. Since these approximations differ from L,(x) by terms of order
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x!/2[log?x they are not appreciably better or worse than L,(x) over most of the
range x <8 x 10'°. The advantage of L,(x) is that it is easy to compute, e.g.,
from

(2.8) L,(x)=2c,(L(x) + K - x/log x),

where K = 2/log2 — L(2) = 1.84022630- - - .

3. Brun’s Constant. Let

1 1

(3.0) B(x) x}Zq:ég(q +q - 2) .
Brun [7] showed that “Brun’s constant” B(e°) = lim, _, ., B(x) is finite (although the
sum of reciprocals of primes has been known to be infinite since Euler’s time). We
have followed the definition of Shanks and Wrench [20], although Brun [7] and
Selmer [17] consider B(=) — (1/3 + 1/5), and Bohman [4] considers B(>) — 1/5.

Assuming that twin primes are distributed randomly with density L,(x) =
2c2/log2x (see Section 2), we can estimate

oo dt
32 00) — ~ = -
(32) B() — B(x) 4c2fx Flog’t 4c2/logx,

which suggests the definition

(3.3) B*(x)=B(x) + 4c,log x.

Although lim,_, ,B*(x) = lim_, ,B(x) = B(=), it is probable that the rate of con-
vergence of B*(x) is much faster than that of B(x). In fact, in contrast to (3.2),
we expect that B*(x) — B(e°) is asymptotically normally distributed with mean
o(1/(x'/?log x)) and standard deviation ~ (8c,) /2 /(x!/?10g x).

Selmer [17] estimated B(ec) = 1.901 * 0.014 by extrapolation from
B(200000). Froberg [8] computed B(n) for several n < 22° and estimated B(e°)
=1.90195 + 3 x 1075, Shanks and Wrench [20] found B(32452843) and esti-
mated B(e°) =1.90218 + 2 x 10~ 5. Finally, Bohman [4] computed B(2 x 10%)
and estimated B(=) = 1.90216 + 5 x 10~°. During the computation of m,(n) as
described above, we computed B(n) and B*(n) for various n < 8 x 10'°. Some
values are given in Table 4, and more are given in a table deposited in the UMT file
of this journal. From our computation of B*(8 x 101%) we estimate that B(e)
probably lies in the range

X —> 0o

(3.4) B()=1.9021604 + 5 x 10~7,

In the computation of B(n) we used floating-point arithmetic with a 60-bit
fraction, and accumulated the sum using Moller’s “quasi double-precision” device [15].
Hence, rounding errors should not affect the entries in Table 4. (Our values of B(n)
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differ from Bohman’s (corrected) values in the 9th decimal place, possibly because of
the effect of rounding errors in his calculations.)

Although we do not know how to bound the error in our estimate (3.4), the
discussion above suggests that x'/2log x(B*(x) — B(=®)) is asymptotically normally
distributed, and we certainly have

(3.5) be!/2log x(B*(x) — 1.9021604)| < 3.5

for all tabulated values in the range [10%, 8 x 10'°]. (The maximum value of
3.4927 is at x = 860000, in the region of the sharp drop in Figure 3.) Hence, it
is probable that
* 10 oo 3.5
(36) BB < 107 — Bl <(8 x 1019)!/210g(8 x 1019) <
which explains the error estimate in (3.4). If the constant (8c2)1/ 2 above is correct,
the probability that B(e°) is in the range given by (3.4) is about 0.88.

Different methods of extrapolating B(x) to the limit have been suggested by
Froberg [8] and Shanks and Wrench [20], but their extrapolations differ from
B*(x) by O(1/x'/?log?x), so are probably not much better or worse than B*(x).
It seems difficult to obtain an appreciably better extrapolation than B*(x) without
being able to predict the large-scale oscillations of s;(x) (see Figure 3).

5x1077,

4. Computation of R(a, b) and p/a, b). If R; and p; are defined by
(1.10) and (1.11), the most time-consuming part of their computation is not the
generation of the primes in [z, b], which may be done efficiently by a sieve method
(as in [5], [6]), but the frequent evaluation of L(x) and R(x) to a precision suf-
ficient to determine {L(x) and (R(x). (Similarly for R; and p, defined by
(2.5) and (2.6), although the situation is not so clear here, because it takes longer,
on the average, to generate a twin prime than a prime.)

To avoid evaluating (L(p)) and (R(p)) for every prime p in [a, b], we can
use simple upper and lower bounds for L(p) and R(p), and only evaluate {L(p)) and
(R(p)) if the upper and lower bounds fail to show that r(p) lies within the maxi-
ma and minima already found. The following lemmas indicate how suitable upper
and lower bounds may be found.

LemMMA 1. Suppose f'(x) <0 on [a, b], and a<a' <x <x'<b'<b.
Then

fa)=fl@) | )~ x) _ f6)~B)

ad-a x' —x b -b

The proof is immediate from a mean value theorem.

LEMMA 2. L"(x),R"(x) and L’(x) are negative for x > 1.

Proof. From (1.1),(2.1) and (1.4) we have L"(x) =~ 1/(xlog?>x) <0, L (x) =
- 402/(xlog3x) <0, and
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(41) " - .—2 had k+1 _ k (logx)k_l
K== k§l<§(k+1) §(k+2)> k+1

Now {(k+ 1) <1+ 1/k for k=1, so (k+ 1)/¢(k + 1) > k/¢(k + 2), and the result
follows from (4.1).
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