The largest known CPAP-k difference
k Primes n's Digits When Discoverer(s)
3 x2506 + 21102 • n 0..2 2506 2004 Torbjörn Alm & Jens Kruse Andersen, PrimeForm, Primo
4 25900 + 469721931951 + 2880 • n 0..3 1777 12 Nov 2007 Ken Davis, NewPGen, PrimeForm, Primo
5 9400734826 • 1499# + x632 + 2310 • n 0..4 645 2004 Jim Fougeron, Primo
6 x218 + 840 • n 0..5 218 2004 Torbjörn Alm & Jens Kruse Andersen
7 x133 + 420 • n 0..6 133 2004 Torbjörn Alm & Jens Kruse Andersen
8 x92 + 210 • n 0..7 92 1997 Harvey Dubner, Tony Forbes & Paul Zimmermann
9 500996388736659 • 193# + x76 + 210 • n 0..8 92 15 Jan 1998 Manfred Toplic, CP09
10 507618446770482 • 193# + x77 + 210 • n 0..9 93 2 Mar 1998 Manfred Toplic, CP10

History of the largest known CPAP-k difference
k Primes n's Digits When Discoverer(s)
3 x2506 + 21102 • n 0..2 2506 2004 Torbjörn Alm & Jens Kruse Andersen, PrimeForm, Primo
3 41#137 - 5576107 + 10164 • n 0..2 1985 2002 David Broadhurst, Primo
 
4 25900 + 469721931951 + 2880 • n 0..3 1777 12 Nov 2007 Ken Davis, NewPGen, PrimeForm, Primo
4 46313478 • 1201# / 1302643 + x498 + 2310 • n 0..3 505 2004 Jens Kruse Andersen, PrimeForm, Primo
4 78006074 • 883# + x371 + 2004 • n 0..3 379 2004 Jim Fougeron
4 23320 + 1308319536235 + 1470 • n 0..3 1000 2004 Hans Rosenthal, Jim Fougeron, Primo
 
5 9400734826 • 1499# + x632 + 2310 • n 0..4 645 2004 Jim Fougeron, Primo
5 x272 + 1350 • n 0..4 272 2004 Jens Kruse Andersen
 
6 x218 + 840 • n 0..5 218 2004 Torbjörn Alm & Jens Kruse Andersen
 
7 x133 + 420 • n 0..6 133 2004 Torbjörn Alm & Jens Kruse Andersen
7 x97 + 210 • n 0..6 97 1995 Harvey Dubner & Harry Nelson
 
8 x92 + 210 • n 0..7 92 Nov 1997 Harvey Dubner, Tony Forbes & Paul Zimmermann
 
9 500996388736659 • 193# + x76 + 210 • n 0..8 92 15 Jan 1998 Manfred Toplic, CP09
 
10 507618446770482 • 193# + x77 + 210 • n 0..9 93 2 Mar 1998 Manfred Toplic, CP10

Big constants

x76 = 6240141611007307622465889025426185177074468140120944390087327315890659848721

x77 = 54538241683887582668189703590110659057865934764604873840781923513421103495579

x92 = 43804034644029893325717710709965599930101479007432825862362446333961919524977985103251510661

x97 = 1089533431247059310875780378922957732908036492993138195385213105561742150447308967213141717486151

x133 = 220505805098423836819764228021381624235600014226631323732190862768
0719158137585667750659950011921258708497882049342113679838524318399

x218 = 1710314864346465484108592184076855564975234702180394797683443122161589881975347244280715286678546006913815669
5534325982537058769170527990893016488272955332936078978017144057593234210769778622909436276234673417088036739

x272 = 5664766322442249254371230091507914625954793773584708235455123610906765158309227090915170593
0326496339047403010122690110808765199726179853671275222228963017234966647316007126105443546
537713130920430017652260314022049007616504227665344802771835420837602700201417124972030829

x371 = 211456793391168128047279038344199047999237962856056679635442435783875508364793549383096908674
055907232062402104302800309850677157870519355607544687390457996561399556465527843958680778163
142462848746567536695606514797322232795128407336312883815163380914875924413574595458906498410
64655307278791070721577180306286411790729833109653930842047229740770849707899029657847082299

x498 = 1161719015143012794121754001566538080263593537397930820975927707160538253075959973861229736824601862
1756915012917466523258116732226677456532069983002381169824910734505346698565401855618416880928412560
3664216792484911826057321448712777916321546744979037962370826360519799915114703062304116721936655626
1929499932561340830714609010093682606701953247557023517250162447697065051646724698400705091689802253
52420335236903442680040421006151255566837889765262056304737646834967091494264642282692101351482213

x632 = 2945339776545027154539918808526655368252378620585099496385650600431498269661083903162110429127353107760157
5722896273706142925617722759452435429488328389328281466289664367352954006161792070955769212597757921750265
7961793687809965941432837668975308693630297479962123616982055909919099170254969337754185770956958979321362
7618473506498212549583475520940170609152997656163627242028405951204832924677679233522715633270907575099531
8190876684457108535835673100713235902439791043089273743933820748006776935061385300428903923277275802622905
803642678199081441811796580012014897740453191957526038333320588240996195703518136355252551601080488639

x2506 = 5082567793.....2515921377